Minggu, 21 September 2014

logaritma

Logaritma adalah operasi matematika yang merupakan kebalikan darieksponen atau pemangkatan.
Rumus dasar logaritma:
bc= a ditulis sebagai blog a = c (b disebut basis)
Beberapa orang menuliskan blog a = c sebagai logba = c.

Basis[sunting | sunting sumber]

Basis yang sering dipakai atau paling banyak dipakai adalah basis 10, e≈ 2.71828... dan 2.

Notasi[sunting | sunting sumber]

  • Di Indonesia, kebanyakan buku pelajaran Matematika menggunakan notasi blog a daripada logba. Buku-buku Matematika berbahasa Inggris menggunakan notasi logba
  • Beberapa orang menulis ln a sebagai ganti elog alog a sebagai ganti 10log a dan ld a sebagai ganti 2log a.
  • Pada kebanyakan kalkulator, LOG menunjuk kepada logaritma berbasis 10 dan LN menunjuk kepada logaritma berbasis e.
  • Pada beberapa bahasa pemrograman komputer seperti C,C++,Java dan BASIC, LOG menunjuk kepada logaritma berbasis e.
  • Terkadang Log x (huruf besar L) menunjuk kepada 10log x dan log x (huruf kecil L) menunjuk kepada elog x.

Mencari nilai logaritma[sunting | sunting sumber]

Cara untuk mencari nilai logaritma antara lain dengan menggunakan:

Rumus[sunting | sunting sumber]

Logaritma
ac = b → ª log b = c
a = basis
b = bilangan yang dilogaritma
c = hasil logaritma
Sifat-sifat Logaritma
ª log a = 1
ª log 1 = 0
ª log aⁿ = n
ª log bⁿ = n • ª log b
ª log b • c = ª log b + ª log c
ª log b/c = ª log b – ª log c
ªˆⁿ log b m = m/n • ª log b
ª log b = 1 ÷ b log a
ª log b • b log c • c log d = ª log d
ª log b = c log b ÷ c log a

Kegunaan logaritma[sunting | sunting sumber]

Logaritma sering digunakan untuk memecahkan persamaan yang pangkatnya tidak diketahui. Turunannya mudah dicari dan karena itu logaritma sering digunakan sebagai solusi dari integral. Dalam persamaan bn = xb dapat dicari denganpengakarann dengan logaritma, dan x dengan fungsi eksponensial.

Sains dan teknik[sunting | sunting sumber]

Dalam sains, terdapat banyak besaran yang umumnya diekspresikan dengan logaritma. Sebabnya, dan contoh-contoh yang lebih lengkap, dapat dilihat di skala logaritmik.
  • Negatif dari logaritma berbasis 10 digunakan dalam kimia untuk mengekspresikan konsentrasi ion hidronium (pH). Contohnya, konsentrasi ion hidronium pada air adalah 10−7 pada suhu 25 °C, sehingga pH-nya 7.
  • Satuan bel (dengan simbol B) adalah satuan pengukur perbandingan (rasio), seperti perbandingan nilai daya dantegangan. Kebanyakan digunakan dalam bidang telekomunikasielektronik, dan akustik. Salah satu sebab digunakannya logaritma adalah karena telinga manusia mempersepsikan suara yang terdengar secara logaritmik. Satuan Bel dinamakan untuk mengenang jasa Alexander Graham Bell, seorang penemu di bidang telekomunikasi. Satuan desibel (dB), yang sama dengan 0.1 bel, lebih sering digunakan.
  • Dalam astronomi, magnitudo yang mengukur terangnya bintang menggunakan skala logaritmik, karena mata manusia mempersepsikan terang secara logaritmik.

Penghitungan yang lebih mudah[sunting | sunting sumber]

Logaritma memindahkan fokus penghitungan dari bilangan normal ke pangkat-pangkat (eksponen). Bila basis logaritmanya sama, maka beberapa jenis penghitungan menjadi lebih mudah menggunakan logaritma::
Penghitungan dengan angkaPenghitungan dengan eksponenIdentitas Logaritma
 \!\, a b  \!\, A + B  \!\, \log(a b) = \log(a) + \log(b)
 \!\frac{a}{b}  \!\, A - B  \!\, \log(\frac{a}{b}) = \log(a) - \log(b)
 \!\, a ^ b  \!\, A b  \!\, \log(a ^ b) = b \log(a)
 \!\, \sqrt[b]{a}  \!\, \frac{A}{b}  \!\, \log(\sqrt[b]{a}) = \frac{\log(a)}{b}
Sifat-sifat di atas membuat penghitungan dengan eksponen menjadi lebih mudah, dan penggunaan logaritma sangat penting, terutama sebelum tersedianya kalkulator sebagai hasil perkembangan teknologi modern.
Untuk mengkali dua angka, yang diperlukan adalah melihat logaritma masing-masing angka dalam tabel, menjumlahkannya, dan melihat antilog jumlah tersebut dalam tabel. Untuk mengitung pangkat atau akar dari sebuah bilangan, logaritma bilangan tersebut dapat dilihat di tabel, lalu hanya mengkali atau membagi dengan radix pangkat atau akar tersebut.
sumber :http://id.wikipedia.org/wiki/Logaritma

Tidak ada komentar:

Posting Komentar

visitors

Flag Counter